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Abstract

There are three levels of description in classical statistical mechanics, the microscopic/

dynamic, the macroscopic/statistical and the thermodynamic. At one end there is a well-used

concept of equilibrium in thermodynamics and at the other dynamic equilibrium does not exist

in measure-preserving reversible dynamic systems. Statistical mechanics attempts to situate

equilibrium at the macroscopic level in the Boltzmann approach and at the statistical level in

the Gibbs approach. The aim of this work is to propose a reconciliation between these

approaches and to do so we need to reconsider the concept of equilibrium. Our proposal is

that the binary property of the system being or not being in equilibrium is replaced by a

continuous property of commonness.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the fundamental problems in the foundations of statistical mechanics is to
give an explanation as to why ‘equilibrium’ statistical mechanics is so successful.
That is to say, why the use of the standard Gibbsian methods ‘reproduces’
see front matter r 2005 Elsevier Ltd. All rights reserved.
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thermodynamic results. One offered explanation for this is the standard ergodic
approach. As to whether this gives an acceptable explanation Van Lith (2001) offers
the impression ‘‘that the communis opinio in the physics literature is that it does; in
the philosophy literature that it doesn’t’’. My impression agrees with hers. However,
there is a further twist to the story. When confronted with the question of what is
‘actually going on’ in a gas of particles (say) when it is in equilibrium, or when it is
coming to equilibrium, many physicists are quite prepared to desert the Gibbsian
approach entirely and to embrace a Boltzmannian view (Ruelle, 1991; Lebowitz,
1993; Bricmont, 1995; Goldstein, 2001). In particular according to Goldstein:

‘‘Ludwig Boltzmann explained how irreversible macroscopic laws... originate in
the time-reversible laws of microscopic physics. Boltzmann’s analysis... is
basically correct. The most famous criticisms of Boltzmann’s later work on the
subject have little merit. Most twentieth century innovations – such as the
identification of the state of a physical system with a probability distribution r on
phase space, of its thermodynamic entropy with the Gibbs entropy of r; and the
invocation of the notions of ergodicity and mixing for the justification of
statistical mechanics – are thoroughly misguided’’ (Goldstein, 2001, p. 39).

and Lebowitz:

‘‘Having results for typical microstates rather than averages is not just a
mathematical nicety but at the heart of understanding the microscopic origin of
observed macroscopic behaviour. We neither have nor do we need ensembles... .
What we do need and can expect is typical behaviour’’ (Lebowitz, 1993, p. 38).

These assertions are reinforced by the opinion of Ruelle1 that the Boltzmannian
approach

‘‘is now generally accepted by physicists. ... There are some dissenting voices, such
as that of Ilya Prigogine, but the disagreement is based on philosophical prejudice
rather than physical evidence’’ (Ruelle, 1991, p. 113).

However, most work in equilibrium statistical mechanics uses the tools developed by
Gibbs. Given a particular thermodynamic setup and microscopic model the
appropriate probability distribution (microcanonical, canonical, grand-canonical,
etc.) is chosen. The entropy is taken to be that of Gibbs and the holy grail for any
investigation is an analytic form for the partition function; the notable successes
being the solution of the zero-field two-dimensional Ising model by Onsager (1944),
of the six-vertex model in 1967 by Lieb (see, Lieb & Wu, 1972) and of the eight-
vertex model in 1972 by Baxter (see, Baxter, 1982). There have been many attempts
to extend the Gibbs approach to non-equilibrium. As indicated above in the quote
1I think Ruelle rather overstates the case. In particular the rational subjectivist approach of Jaynes

(1983) and the interventionist approach most recently argued for by Ridderbos and Redhead (1998) and

Ridderbos (2002) would find some favour.
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from Ruelle, the most developed programme for doing this is that of the
Brussels–Austin School of the late Count Ilya Prigogine.2 However, many remain
unconvinced of either the actual or potential success of this enterprise. There would
seem to be the need to explore the possibility of holding, with Lebowitz, Goldstein,
Ruelle et al., to the conviction that Boltzmann got it right about the approach to
equilibrium, whilst at the same time with a good conscience continuing to use the
standard distributions of Gibbs for everyday equilibrium calculations. We shall
attempt to take some steps along this path. In order to do so we need to resolve in
some way three questions, to which the current versions of the Gibbs and Boltzmann
approaches offer apparently irreconcilable answers.
(i)
2A

the e

comp
What is meant by equilibrium?

(ii)
 What is statistical mechanical entropy?

(iii)
 What is the object of study?
The attempt to produce conciliatory answers to (i) and (ii) will occupy most of this
paper. However, we must at the outset deal with (iii). Ensembles are an intrinsic
feature of the approach of Prigogine for whom ‘‘it is at the level of ensembles that
temporal evolution can be predicted’’ (Prigogine, 1994, p. 8) and for Mackey (1989)
a ‘‘thermodynamic system is [my italics] a system that has, at any given time, states
distributed throughout phase space ..., and the distribution of these states is
characterized by a density ...’’(p. 984). The density referred to is the ensemble density
and thus the ensemble becomes the way that a thermodynamic system is defined. In
contrast to this we shall follow the view of Lebowitz given above that the object of
study in statistical mechanics is a single system. All talk of ‘ensembles’ is taken to be
just a way of giving a relative frequency flavour to the probabilities of events
occurring in that system.

In Section 2 we define the dynamic microstructure of our system and introduce
two gas models which will be used as examples in the later parts of the paper. In
Section 3 we describe the different concepts of equilibrium in dynamics, the
Boltzmann and Gibbs approaches to statistical mechanics and thermodynamics. In
Section 4 we discuss the Boltzmann approach with particular reference to the way in
which equilibrium is defined and the Neo–Boltzmannian reliance on the concept of
typical behaviour. With respect to the latter we suggest that the expected typical
behaviour can be encapsulated by the term ‘thermodynamic-like’, which signifies the
type of fluctuations to be expected in dependent thermodynamic variables, most
particularly the entropy, and we discuss the conditions on the system needed for
thermodynamic-like behaviour to be typical. At that point it is necessary to consider
the usual demarcation made between the system being or not being in equilibrium
and we discuss, with the use of the example of the baker’s gas with a small number of
microsystems, the problematic nature of this property. This leads us to the rather
lthough the fundamentals of the work of this school have remained unchanged since their inception in

arly sixties, the approach has evolved substantially, leading to a great wealth of publications. For a

rehensive review see Bishop (2004).
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radical suggestion that it would be better to replace the binary equilibrium property
with a continuously changing property which we call commonness. In Section 5 we
use the example of a gas expanding in a box when a partition is removed to describe
the role ascribed to the Gibbs approach in the overall picture we are attempting to
develop. Of course, one question which needs to be addressed is the meaning of
probability and this is discussed in Section 6. Section 7 contains our proposals for a
model incorporating both the Boltzmann and Gibbs viewpoints and our conclusions
are presented in Section 8.
2. The microstructure

Consider a system that, at time t, has a microstate given by the vector xðtÞ in the
phase space G: The time parameter t can be discrete or continuous and the phase
space can also be continuous or discrete. Some one-to-one autonomous dynamics
x ! ft x; (tX0) determines a flow in G and the set of points xðtÞ ¼ ftxð0Þ;
parameterized by tX0; gives a trajectory. The set of mappings fftgtX0 is a semi-
group. The system is reversible if there exists an idempotent operator I on the
points of G; such that ftx ¼ x0 implies that ftI x0 ¼ I x: Then f�t ¼ ðftÞ

�1
¼ IftI

and the set fftg with t 2 R or Z is a group. Henceforth we shall assume that
the system under discussion is reversible. If G consists of a finite number of points
then t 2 Z and the system is periodic. If G is continuous then t 2 Z or t 2 R:
In this case, we shall restrict attention to a subset L 
 G invariant under fftg: We
denote by m a measure on L such that (a) mðLÞ is finite, (b) m is absolutely
continuous with respect to the Lebesque measure on L; (c) m is preserved by the
flow;that is mðftgÞ ¼ mðgÞ; for all t and all measurable g � L: It can now be shown
that the Poincaré (1890) recurrence theorem will apply (Ott, 1993, p. 214) to flows for
which xð0Þ 2 L:

2.1. Useful examples

To clarify the discussion it is useful to resort to computer simulations of simple
models. However, most interesting problems in statistical mechanics concern
cooperative systems and, even at equilibrium (see e.g. Baxter, 1982), there are few
of these which can be solved exactly. So, of necessity, useful examples are of
assemblies of non-interacting microsystems and the literature contains discussions of
many ‘toy models’ of this kind.3 Here we shall use two.

2.1.1. A perfect gas—continuous time and continuous space

Consider a gas of N particles of unit mass moving in the two-dimensional box
�L=2pxpL=2; �L=2pypL=2; with elastic walls. We suppose that the initial
3A model which has featured prominently in such discussions is the spin-echo system. For a recent

account of this model see Lavis (2004) and for simulations for a number of deterministic and stochastic

systems see Lavis (2003).
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positions ðxðkÞð0Þ; yðkÞð0ÞÞ; k ¼ 1; 2; . . . ;N of the particles are such that all the yðkÞð0Þ
are distinct and the initial velocities are all in the x-direction. Then all the particles
will perform one-dimensional oscillations in the x-direction at constant speeds. If
we denote the positions and velocities at time t by ðxðkÞðtÞ; vðkÞðtÞÞ; k ¼ 1; 2; . . . ;N
then jvðkÞðtÞj is constant and the system is reversible with IðxðkÞ; vðkÞÞ ¼ ðxðkÞ;�vðkÞÞ: In
Fig. 1 we show a typical evolution of the gas from a state where all the particles are
congregated near the left-hand end of the box. Calculations for this example are used
to illustrate the discussion in Section 7.
t=0 t=1

t=2 t=3

t=4 t=5

t=6 t=7

Fig. 1. A perfect gas of N ¼ 1000 particles moving horizontally in a box with elastic walls.
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Fig. 2. The baker’s transformation and its inverse.

D.A. Lavis / Studies in History and Philosophy of Modern Physics 36 (2005) 245–273250
2.1.2. A baker’s gas—discrete time and continuous space

This is the transformation, shown in Fig. 2, where a square of side L is stretched to
twice its width and then cut in half with the right-hand half used to restore the upper
half of the unit square. As the mapping f on the Cartesian coordinates L 
 ðx; yÞ of
the square, it is given by

fðx; yÞ ¼
ð2x; 1

2
yÞ; mod1; 0pxp 1

2
;

ð2x; 1
2
½y þ 1�Þ; mod1; 1

2
pxp1:

(
(1)

A convenient way of writing this transformation is to express x and y as binary
strings: x ¼ 0 � x1x2x3 . . . and y ¼ 0 � y1y2y3 . . . with xk; yk ¼ 0; 1: Then the
transformation takes the form fð0 � x1x2x3 . . . ; 0 � y1y2y3 . . .Þ ¼ ð0 � x2x3x4 . . . ; 0 �

x1y1y2 . . .Þ; with f�1
ð0 � x1x2x3 . . . ; 0 � y1y2y3 . . .Þ ¼ ð0 � y1x1x2 . . . ; 0 � y2y3y4 . . .Þ: The

mapping is reversible with f�1
¼ IfI and Iðx; yÞ ¼ ðy; xÞ: It can also be shown

(Lasota & Mackey, 1994, p. 54–56) to be volume-preserving and thus that the
Poincaré (1890) recurrence theorem applies. We are interested in a baker’s gas of N

‘particles’. In Fig. 3 we show a typical evolution from a state where all the particles
are congregated near the bottom left corner of the box.
3. Different views of equilibrium

The three levels of description in classical statistical mechanics, referred to in the
abstract, each bring with them a definition of equilibrium. In fact by separating the
macroscopic (Boltzmann) and statistical (Gibbs) approaches one can identify four
distinct concepts of equilibrium.
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t=0 t=2

t=5 t=6

t=8 t=10

t=13 t=20

Fig. 3. A gas of N ¼ 512 particles moving under the baker’s transformation.
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A dynamic system is in equilibrium at time t if its state is given by a phase point
xðtÞ lying on an attractor.4 However, of course, measure-preserving reversible
dynamic systems do not have attractors.5
4For our purpose this is an adequate definition, although the term is sometimes used only for fixed

points, where its use includes repelling (unstable) and marginal equilibrium points.
5This means that the remark by Sklar (1993, p. 156) that in statistical mechanics ‘‘the equilibrium state

exists as the ‘attractor’ to which the dynamics of non-equilibrium drives systems ...’’ must not be taken too

literally.
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To describe the Boltzmann approach we need to introduce some macroscopic

variables. In general, these will be at the observational level for the system, but will
encapsulate more detail than the thermodynamic variables.6Examples of these would
be local variables which quantified spatial inhomogeneities of density or magnetiza-
tion in a system (see Section 4).7Suppose that, as in our examples discussed below,
the system consists of N identical microsystems and that we have a set X of
macrovariables. A macrostate m is a m-measurable subset of L: The set of
macrostates fmg is defined so that:
(i)
6R
7A

of a

macr
8Th

mean

In fa

micro

Ix a
9So

rðxÞm
10T
11I
Every x 2 L is in exactly one macrostate denoted by mx:

(ii)
 Each macrostate corresponds to a unique set of values for X:

(iii)
 mx is invariant under all permutations of the microsystems.

(iv)
 The phase points x and Ix are in macrostates of the same size.8
Given a particular set of macrovariables and macrostates, the Boltzmann Entropy is
given by

SBðxÞ ¼ kB ln½mðmxÞ�. (2)

Equilibrium is defined by reference to the macrostate, which is uniquely given by a
set of values of the macrovariables. According to Bricmont (1995, p. 179), ‘‘by far
the largest volumes correspond to the equilibrium values of the macroscopic variables
(and this is how ‘equilibrium’ should be defined)’’. This is the standard
Boltzmannian definition. The system is in equilibrium if its phase point is in the
macrostate of largest volume (m-measure), corresponding to the largest value of SB;
and this in turn defines the equilibrium values of the macrovariables.

The starting point for the Gibbs approach is to suppose the phase-point x; in some
invariant L � G; is distributed according to a probability density function9 r which
is invariant under the flow (a solution of Liouville’s equation). Equilibrium is defined
as the situation where the probability density function is not an explicit function of
time and r becomes a function of the global constants of motion. The statistical
mechanical ‘analogues’10 of thermodynamic quantities are either fixed external
parameters, related to phase functions11 or functionals of r: In particular the
idderbos (2002) refers to them as supra-thermodynamic variables.

nother simple example, in the context of coin-flipping, is given by Bricmont (2001, p. 8). In N tosses

coin a microstate is a particular record of the N outcomes and a macrostate is identified by the

ovariable N0 and consists of the set of all microstates for which exactly N0 of the outcomes are heads.

is is necessary to ensure that the macrostate structure reflects the reversibility of the system; which

s that the Boltzmann entropy profile along x ! ftx is the same as that along Ix ! Iftx ¼ f�tIx:
ct, of course, in cases like the perfect gas where macrostates are created by course-graining the one-

system configuration space and reversibility corresponds to changing the sign of the velocity, x and

re in the same macrostate.

that the probability of the phase point being in a small region dL around a phase point x is

ðdLÞ: The meaning we give to probability is discussed in more detail in Section 6.

his is the term used by Gibbs (1902, Chapter 14).

n a way which will be discussed in Section 7.
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analogue of thermodynamic entropy is the Gibbs entropy

SG½r� ¼ �kB

Z
L
rðxÞ ln½rðxÞ�dm. (3)

From a practical point of view this scheme is very satisfactory. However, problems
arise when an attempt is made to extend it to non-equilibrium situations, which are
now perceived as being represented by time-dependent solutions of Liouville’s
equation. Specifically:
(i)
 When rðxÞ is replaced in (3) by any time-dependent solution rðx; tÞ of Liouville’s
equation, SG½rðtÞ� remains invariant with respect to time.
(ii)
 Given an arbitrary initial condition rðx; 0Þ; the evolving solution rðx; tÞ of
Liouville’s equation will not in general converge to a time-independent
(equilibrium) solution as t ! 1:
The Brussels–Austin programme is, as we have indicated above, an attempt to
circumvent these problems.

In classical thermodynamics the approach to equilibrium is usually described as
leaving the system so that it ‘‘eventually reaches a state in which no further change is
perceptible, no matter how long one waits’’ (Pippard, 1961, p. 6). The equilibrium
state is thus the situation in which (for an isolated system) no perceptible change
occurs in any thermodynamic variables. However, Uffink (2001) has argued that the
tendency of isolated systems to approach equilibrium is not a consequence of the
standard laws of thermodynamics. This has led Brown and Uffink (2001, p. 528) to
formulate a principle which they call the minus first law that ‘‘an isolated system in
an arbitrary initial state within a finite fixed volume will spontaneously attain a
unique state of equilibrium’’. With this addition, thermodynamic equilibrium, for a
finite isolated system, can be seen to have three important properties:
(a)
 It is a binary property; a system either is or is not in equilibrium.

(b)
 A system in equilibrium never evolves away from equilibrium.

(c)
 A system not in equilibrium evolves into equilibrium.
Indeed the quote from Pippard may seem to allow us to add ‘in a finite time’ to (c) or
at the very least that ‘so that the difference from equilibrium after a finite time is
imperceptible’.

In this description of four distinct types of equilibrium, dynamic equilibrium has
been included for completeness. Although it shares properties (a)–(c) with
thermodynamic equilibrium it exists only for dissipative systems. Statistical
mechanical equilibrium for the systems considered here, for which the dynamics is
non-dissipative, cannot be a consequence of, or related to, the system being in
dynamic equilibrium. The Brussels–Austin extension of the Gibbs programme would
also satisfy properties (a)–(c). However, as will be discussed in Section 4, the form of
equilibrium which features in the Boltzmann approach does not satisfy (b) and
satisfies (c) only in a qualified sense (see Section 4).
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A classic problem in statistical mechanics (Sklar, 1993, Chapter 9; Callender,
1999) is to understand in what sense thermodynamics can be said to reduce to
statistical mechanics and thus part of the problem of equilibrium is to relate in some
way equilibrium in statistical mechanics and equilibrium in thermodynamics.
However, as we have seen there is no unique statistical mechanical equilibrium. The
Boltzmann and Gibbs approaches have very different concepts. Indeed, with the
usual ensemble interpretation of the probability density function, Gibbsian
equilibrium is, unlike Boltzmannian equilibrium, not a property of an individual
system. So for us the problem is both to effect a reconciliation between
Boltzmannian and Gibbsian equilibrium and to relate them to thermodynamic
equilibrium. To do this we propose that equilibrium as a binary property is replaced
by something (which we call commonness) which encapsulates degrees of
‘equilibriumness’.
4. The Boltzmann approach

Most examples of the use of this approach consider situations where the
macrovariables measure inhomogeneities in the distribution of microsystems over
the one-microsystem phase space. This space is divided into p cells, labelled ‘ ¼
1; 2; . . . ; p; and, for the phase point x 2 L; N‘ðxÞ is the number of microsystems in
cell ‘ ¼ 1; 2; . . . ; p: Given that the microsystems are identical, the macrostate mx 2 L
corresponds to all permutations of microsystems in cells with the same values of the
macrovariables. Thus

mðmxÞ

mðLÞ
¼

N!Qp
‘¼1fN‘ðxÞg!

1

pN
. (4)

For the baker’s gas L is the union of N squares of side L giving mðLÞ ¼ L2N and we
divide the one-particle phase space (configuration space in this case) into squares of
side L=2m to give p ¼ 22m:12In the case of the perfect gas mðLÞ ¼ LN and we take
p ¼ 2m:

As indicated above, the entropy in the Boltzmann approach is the phase function
(2), which will fluctuate with time, the system being construed as being in equilibrium
when entropy has its maximum value ðSBÞMax: The difficulties associated with this
definition of equilibrium are discussed in Section 4.1. However, another question
arises in relation to this approach. This is usually identified as the problem of the
‘approach to equilibrium’.13 However, it can be extended to the broader problem
associated with certain expectations about the form of the entropy profile and the
need to give a dynamic account which justifies these expectations. In somewhat
12The cells are labelled sequentially in rows, so that cell (1,1) in the bottom left corner is labelled ‘ ¼ 1

and cell ð2m; 2mÞ in the top right corner is labelled ‘ ¼ p:
13And part of the discussion is concerned with giving some explanation as to why the universe seems to

have started in a very uncommon state. According to Goldstein (2001) this is the ‘‘hard part’’ of the

Boltzmann approach. It is beyond the scope of the present discussion.
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imprecise language, we expect that in most cases the entropy will behave in a
thermodynamic-like way. This we take to mean that:

The Boltzmann entropy, for the evolving system, is most of the time close to its
maximum value, from which it exhibits frequent small fluctuations and rare large
(downward) fluctuations.

The problem of quantifying and justifying these expectations is discussed in
Section 4.2.

4.1. Trying to define equilibrium

It is clear that ðSBÞMax will not necessarily be the value of entropy for the largest
proportion of microstates. Associated with a macrostate m; there will be a degeneracy
OðmÞ; giving the number of macrostates of measure mðmÞ:14 We define

UðmÞ ¼
mðmÞOðmÞ

mðLÞ
where mðLÞ ¼

X
fmg

mðmÞ (5)

and ðSBÞU denotes the Boltzmann entropy for a macrostate giving the largest value of
UðmÞ: With

SL ¼ SBðLÞ ¼ kB ln½mðLÞ�, (6)

the entropy of L; it is clear that the inequalities SL4ðSBÞMaxXðSBÞU must be
satisfied15 and, from (4),

SL � ðSBÞMax

NkB
p

SL � ðSBÞU

NkB
o�

1

N

X
fmg

mðmÞ
mðLÞ

ln
mðmÞ
mðLÞ

� �
o

ln½ZðN; pÞ�

N
, (7)

where

ZðN ; pÞ ¼
ðN þ p � 1Þ!

N!ðp � 1Þ!
. (8)

In Fig. 4 we show the Boltzmann entropy of the baker’s gas for various cases of
different numbers of particles and cells, where initially the gas starts with all the
particles in cell (1,1).16 We observe a rapid rise of the scaled entropy from its initial
value of zero followed by small fluctuations around a value rather less than the
scaled value of unity.17 It is clear that, in all the cases shown in Fig. 4, UðmÞ is not
maximal for the largest macrostate, although detailed computations with large
values of N are not only difficult, but not particularly revealing.

It is more useful to concentrate on small values of N and p where the results are
easy to compute. With p ¼ 4 cells (m ¼ 1) and N ¼ 8 we denote by the vector
14In the case of our examples OðmÞ will equal the number of distinct permutations of fN1; . . . ;Npg:
15Assuming that the Boltzmann entropy is additively scaled so as to be non-negative.
16In all graphs of the Boltzmann entropy and Table 1, the minimum entropy is set to zero with the

condition p ¼ V : Additionally in Fig. 4 the entropy is scaled by its maximum value.
17This behaviour is, of course, typical of a wide range of models with both discrete and continuous phase

spaces (Lavis, 2003).
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Fig. 4. The scaled Boltzmann entropy as it evolves with time for the baker’s gas model. Initially all the

particle are randomly distributed in cell (1,1), (N1 ¼ N). The figures in horizontal lines correspond (from

top to bottom) to average numbers of particles per cell of 8, 2 and 0.5, respectively.
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n ¼ ðn1; n2; n3; n4Þ an unordered distribution of particles in the four cells, with OðnÞ
being the number of macrostates with this distribution. Data for this case are given
in order of decreasing UðnÞ in Table 1. It will be observed that the macrostate of
maximum size n ¼ ð2; 2; 2; 2Þ is the eighth in the list. Values derived from Table 1 are
SL ¼ NkB 1:3863; ðSBÞMax ¼ NkB 0:9790 and ðSBÞU ¼ NkB 0:9283: A typical evolu-
tion of the entropy for this case is shown in Fig. 5. The ‘plateau’ at ðSBÞU will be
observed.

So if we were to propose a definition of the equilibrium macrostate what would we
choose? If we take a quasi-thermodynamic view and suppose that the equilibrium
value for the entropy is that into which it settles, with subsequent small fluctuations
(and very rare large fluctuations) then for small systems we have shown by
simulation that this is not the largest entropy, for which the system would be in the
largest macrostate. An obvious strategy would be to broaden the range of entropy
for equilibrium. One might, for example, say that the system is in equilibrium if
SB 2 ½ðSBÞMax; ðSBÞMaxð1� eÞ�; where e ¼ 2½ðSBÞMax � ðSBÞU�=ðSBÞMax: A similar kind
of ‘e-equilibrium’ strategy, in the context of the Gibbs approach, was proposed by
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Table 1

Data for the baker’s gas with N ¼ 8 and p ¼ 4

n OðnÞ mðnÞ=mðLÞ SBðnÞ=ðNkBÞ UðnÞ

ð3; 2; 2; 1Þ 12 0.0256 0.9283 0.3076

ð4; 2; 1; 1Þ 12 0.0128 0.8417 0.1538

ð3; 3; 1; 1Þ 6 0.01709 0.8776 0.1025

ð3; 3; 2; 0Þ 12 0.0085 0.7910 0.1025

ð4; 3; 1; 0Þ 24 0.0043 0.7043 0.1025

ð4; 2; 2; 0Þ 12 0.0064 0.7550 0.0769

ð5; 2; 1; 0Þ 24 0.0026 0.7271 0.0615

ð2; 2; 2; 2Þ 1 0.0385 0.9790 0.0385

ð5; 1; 1; 1Þ 4 0.0051 0.7271 0.0205

ð5; 3; 0; 0Þ 12 0.0009 0.5032 0.0103

ð6; 1; 1; 0Þ 12 0.0009 0.5032 0.0103

ð4; 4; 0; 0Þ 6 0.0011 0.5311 0.0064

ð6; 2; 0; 0Þ 12 0.0004 0.4165 0.0052

ð7; 1; 0; 0Þ 12 0.0001 0.2599 0.0014

ð8; 0; 0; 0Þ 4 0.15
10�4 0 0.61
10�4
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Fig. 5. The scaled Boltzmann entropy for the baker’s gas model with N ¼ 8 particles and p ¼ 4: Initially
all the particle are randomly distributed in cell (1,1), with configuration (8,0,0,0) and degeneracy of four.

Horizontal lines at ðSBÞMax and ðSBÞU are shown.
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Van Lith (1999). In our case, of course, this means that there will be small
fluctuations of entropy within equilibrium and the possibility of evolution out of
equilibrium accompanied by a large downward fluctuation in entropy. In addition to
the arbitrary division into macrostates, we have added a demarcation given by the
choice of value for e: This is a simple demonstration of our contention that the
quality which we are trying to capture is a matter of degree, rather than the two-
valued property of either being in equilibrium or not in equilibrium. We, therefore,
make the following proposal:

All references to a system being, or not being, in equilibrium should be replaced
by references to the commonness of the state of the system, with this property
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being given by some suitably-scaled monotonically increasing function of the
Boltzmann entropy.

Of course, at this stage, the proposal is confined to the Boltzmann approach.
However, we hope to show that its implementation is of relevance to the
development of a view of statistical mechanics which incorporates both the
Boltzmann and Gibbs approaches and their connection to thermodynamics. It
should be emphasized that no connection is implied, at this stage, between
commonness and ‘commonness of occurrence’. We are not assuming that a
microstate with large commonness (a common microstate) belongs to a macrostate
which is visited more often by an evolving system. This connection is related to the
question of typical behaviour.

4.2. Thermodynamic-like behaviour

A favoured term of the Neo–Boltzmannians (but not of Boltzmann himself) is
‘typical’. Thus, in the quote from Lebowitz (1993) in Section 1, he refers to ‘typical
microstates’ and ‘typical behaviour’ and, in a later paper (Lebowitz, 1999), he makes
the assertion that

‘‘SB will typically increase in a way which explains and describes qualitatively the
evolution towards equilibrium of macroscopic systems. Typical, as used here,
means that the set of microstates corresponding to a given macrostate [m] for
which the evolution leads to a macroscopic decrease in the Boltzmann entropy
during some fixed time period t; occupies a subset of [m] whose [measure] is a
fraction of [mðmÞ] which goes very rapidly (exponentially) to zero as the number of
[particles] in the system increases’’ (Lebowitz, 1999, p. S348).18

Now in ordinary usage ‘typical’ is a description applied to an element of a set with
respect to some particular property.19 In most instances of the use of ‘typical’ by the
Neo–Boltzmannians the element of interest is a microstate (phase point) picked from
phase space (or an energy surface in phase space). The property is ‘imminent
evolution towards equilibrium indicated by an increase in Boltzmann entropy’ or
perhaps more precisely ‘the absence of a imminent large decrease in Boltzmann
entropy’.

Lebowitz ties this behaviour to the structure of macrostates. This connection
could be amplified in the following way. For the macrostate m let mðþþÞ consist of all
x 2 m such that the immediately next and immediately previous macrostates along
the trajectory are of measure larger than m:20 With mð��Þ and mð��Þ defined in a
similar way, it follows, from the reversibility of the system and property (iv) of the
macrostates listed in Section 3, that mðmð�þÞÞ ¼ mðmðþ�ÞÞ: The Neo–Boltzmannian
18We have used square brackets to replace Lebowitz’s notation by our own.
19Thus a 2 A is typical of A with respect to the property b if a and most members of A have the

property b. Or alternatively b is typical of the set A if a randomly chosen member of A is very likely to

have the property b.
20For easy of discussion we ignore the possibility of contiguous macrostates of equal measure.
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argument is now based on the supposition that

mðmðþþÞÞbmðmð��ÞÞbmðmð��ÞÞ, (9)

for all (or most) macrostates m; with the inequality becoming increasingly
pronounced as N increases. Thus, for an arbitrarily chosen macrostate, the measure
mðmðþþÞ [ mð�þÞÞ of phase points which lead to an increase in entropy is very much
larger than the measure mðmðþ�Þ [ mð��ÞÞ of phase points which lead to a decrease in
entropy. Then a typical (randomly chosen) point in m belongs to mðþþÞ [ mð�þÞ;
leading to an increase in entropy. This is justified by Bricmont (2001) using Bayesian
arguments. No explanation is needed for the typical increase in entropy, beyond the
application of the law of large numbers in the limit of large N. If typical behaviour
differs from this then an explanation must be sought (maybe a re-examination of the
designation of macrostates). Within its own terms this Bayesian gloss of typicality is
perfectly satisfactory. However, it is predicated on the validity of (9). While this
appears to be true for many toy models21 general rules for its validity are more
difficult to formulate.

But most statistical mechanical explanations are concerned with something more
than just the immediate increase in entropy following the arbitrary selection of an
initial phase point. The object of interest is the evolution along a trajectory and the
Bayesian argument does not adequately account for this. Consider the following
scenario. For a system a phase point x is chosen. It happens to be in the macrostate m
and according to good Bayesian (or Laplacian) arguments and inequality (9) it will
typically lie in mðþþÞ [ mð�þÞ: Now suppose, in the course of evolution, the contiguous
transition x ! x0 occurs to a macrostate m0: By definition mðm0Þ4mðmÞ and x0 2

m0ð�þÞ
[ m0ð��Þ: Now if x0 were chosen randomly in m0ð�þÞ

[ m0ð��Þ we might typically
expect, from (9), that x0 2 m0ð�þÞ; leading to a further increase in entropy. However,
this is not necessarily the case. The dynamics determines the location of x0 in m0ð�þÞ

[

m0ð��Þ: Merely to associate probabilities with measure without random selection is
not adequate to close the argument.

The requirement of statistical mechanics is that a typical trajectory is thermo-

dynamic-like, according to the definition of this term in Section 4. As yet this
definition lacks precision. However, it is certainly the case that if, along a trajectory
and for most macrostates m; the phase point spent an amount of time in m
proportionally related to mðmÞ the requirement of thermodynamic-like behaviour
would be satisfied. To be more precise, for any x 2 L; let Lx be the trajectory
through x; and TxðmÞ be the proportion of the time that the phase point on this
trajectory is in m:22 Now we can define thermodynamic-like behaviour along the

trajectory Lx as the situation where TxðmÞ is approximately proportional to mðmÞ:
The more common a macrostate is the more common will be its occurrence along a
21It is easy to verify for particular cases of the Kac ring model, which is the example most often cited by

Bricmont.
22It was shown by Birkhoff (1931) that TxðmÞ exists and is independent of the location of x on Lx for

almost all x 2 L; that is except possibly for a set of m-measure zero. From this it follows (see e.g. Lavis,

1977) that TxðmÞ is a constant of motion almost everywhere in L:
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trajectory. For this behaviour to be typical it must be true for most trajectories. This
will hold in a strong sense if

TðmÞ ¼ tðmÞ where tðmÞ ¼ mðmÞ=mðLÞ (10)

for all m and all trajectories apart from a set of measure zero. This is, of course, the
condition that the system is ergodic. So ergodicity is sufficient for (perfect)
thermodynamic-like behaviour along all but an atypical set of trajectories of
measure zero.

The baker’s transformation is a Kolmogorov system (Lasota & Mackey, 1994, p.
91) and is, therefore, both ergodic and mixing.23 So we have an explanation for the
typical thermodynamic-like behaviour exhibited in Figs. 4 and 5. It is also not
difficult to describe at least some of the measure-zero atypical trajectories. Suppose
that the initial binary strings giving the particle positions were periodic and the
periods of all the particles were commensurate. Then the behaviour of the system
(detected, for example, by its entropy profile) would have a periodic form at variance
with thermodynamic-like behaviour. The perfect gas of Section 2.1.1 is also ergodic
(but not mixing) as long as the particle speeds are incommensurate (Farquhar, 1964,
pp. 96–98)24 and the atypical trajectories correspond to a choice of initial speeds
which are commensurate and produce periodic, rather than quasi-periodic
behaviour.

However, ergodicity is not necessary25 since (10) is stronger than is required for a
typical system to behave in a thermodynamic-like way and atypicality can also be
broadened to include a set of trajectories of small but non-zero measure. As pointed
out by Bricmont (1995, 2001) and verified by numerical calculations (Lavis, 2003) the
Kac ring model, which is not ergodic,26 exhibits clear thermodynamic-like
behaviour.

The typicality of thermodynamic-like behaviour, away from the perfect case of an
ergodic system, is difficult to formulate. What counts as sufficiently close to the
perfect situation of (10) to yield an entropy profile which looks thermodynamic-like
and how much atypical behaviour can be tolerated? For the purpose of this work we
shall leave these questions open with symbols of approximation standing as markers
for a more detailed investigation.27
23In fact it is a Bernoulli system (Arnold & Avez, 1968, pp. 125–126).
24The proof of this given by Farquhar, which is a version of the discussion by Khinchin (1949, pp.

58–62), is for two independent particles with periodic boundary conditions and ergodicity is over the

reduced manifold defined by the normal integrals of the motion. Our model maps into one with periodic

boundary conditions and particle velocities to the right by ‘unfolding’ the interval ½�L=2;L=2� into ½�L;L�
(Lavis, 2004). Then it can be seen that the only independent normal integrals of the motion are _xðkÞ ¼ vðkÞ;
k ¼ 1; 2; . . . ;N and the motion is ergodic over the hypercube xðkÞ 2 ½�L;L�; k ¼ 1; 2; . . . ;N:

25Bricmont (1995) also argues that ergodicity is not sufficient, but this is based on the use of ergodicity

to justify measurements as infinite time-averages.
26Its phase space divides into cycles.
27Quantification of what counts as thermodynamic-like and then what count as a tolerable degree of

atypical non-thermodynamic-like behaviour could both be developed using the sort of e criteria described

above for e-equilibrium.
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Ergodicity on L is, of course, equivalent to L being metrically indecomposable
under the flow, and a non-ergodic situation where we can at least map out the
elements of the discussion is when there is a finite or denumerable ergodic
decomposition of L: That is, to within subsets of zero measure,

L ¼
[
fkg

Lk, (11)

where each component Lk is invariant and metrically indecomposable under the
flow. Ergodic decomposition will, of course, apply to any model (like, for example,
the Kac ring) where L consists of a finite number of discrete points; then each Lk is a
cycle of states. Ergodic decomposition also applies where the system is e-ergodic
(Vranas, 1998). In this case one element of the decomposition L1 (say) is such that
mðL1Þ ¼ ð1� eÞmðLÞ for small e40:28

When (11) applies, the time spent in the macrostate m for all trajectories Lx with
x 2 Lk (apart from at set of measure zero) is

TkðmÞ ¼ mðm \ LkÞ=mðLkÞ. (12)

For such a system it is clear that temporal behaviour will be the same for all
trajectories29 within a Lk: The division must be between those members of the
ergodic decomposition in which the behaviour is thermodynamic-like and those in
which it is not. So:
(T1)
28V

eviden
29A

taken
30Th
We indicate that the system is behaving in Lk in a way which can be counted as
thermodynamic-like by writing

TkðmÞFtðmÞ; 8m. (13)
(T2)
 We denote by LðTÞ the union of all Lk satisfying (13) with LðAÞ ¼ LnLðTÞ and by
pk the probability30 that the system is in Lk: Then thermodynamic-like
behaviour is typical for the system ifX

Lk�LðAÞ

pk51. (14)
5. The Gibbs approach

Given that we are concerned to incorporate both the Boltzmannian and Gibbsian
view of statistical mechanics into our overall picture, we must now examine the role
to be ascribed to the Gibbs approach. This we do by means of a simple example.
ranas (1998) has argued that many dynamic systems of interest are e-ergodic, but as yet the hard

ce for this is lacking.

t all relevant places in the following discussion the phrase: ‘except possibly a set of measure zero’, is

to apply.

e meaning of which is discussed in Section 6.



ARTICLE IN PRESS

D.A. Lavis / Studies in History and Philosophy of Modern Physics 36 (2005) 245–273262
Consider a gas of N particles moving in d dimensions. Then the phase vector x 2 G
is 2dN-dimensional, composed of configuration and momentum vectors qðkÞ ¼

ðq
ðkÞ
1 ; . . . ; qðkÞ

d Þ and pðkÞ ¼ ðp
ðkÞ
1 ; . . . ; pðkÞ

d Þ; k ¼ 1; 2; . . . ;N: Let L correspond to the gas
being confined to the hypercubic box B ¼ fxj � 1

2 LpqðkÞ
a p 1

2 L; 8k; 8 ag: Then, if it
is left undisturbed ‘a sufficient time to attain thermodynamic equilibrium’, the phase-
point x will, according to the Gibbs prescription, be distributed in L according to the
appropriated equilibrium probability density function, which we denote by rGðxÞ:

Now suppose that the gas is confined by a partition to the part of the box, denoted
by Bð�Þ; with q

ðkÞ
1 o0; 8k: In this situation, if the system is left to attain

thermodynamic equilibrium, the appropriate probability density function will be
rð�Þ

G ðxÞ; which differs from rGðxÞ only in respect of the restriction on the
configuration space. If the partition is removed at time t ¼ 0 the probability density
function is

rðx; 0Þ ¼
rð�Þ

G ðxÞ; x 2 Lð�Þ;

0 otherwise;

(
(15)

where Lð�Þ is that part of L corresponding to all the particles being in Bð�Þ: This is no
longer the equilibrium distribution; it will be the initial condition for a non-
equilibrium solution rðx; tÞ evolving according to Liouville’s equation. However, as
we have indicated, the Gibbs entropy for this solution remains constant and rðx; tÞ

does not converge to rGðxÞ either in finite time, as we would like for
thermodynamics, nor even on an infinite time scale. The most we can obtain is,
for a mixing system, when the expectation values of a certain class of phase functions
calculated using rðx; tÞ converge, as t ! 1; to their expectation values calculated
with rGðxÞ: The resolution to this problem suggested by Gibbs (1902, p. 148) (see
also Ehrenfest & Ehrenfest-Afanassjewa, 1912) was to coarse-grain the phase-space
in the manner in which macrostates were obtained in the Boltzmann approach. In
the macrostate m the probability density function rðxÞ is replaced by pðmÞ=mðmÞ where

pðmÞ ¼
Z
m
rðxÞdm, (16)

is the probability of the phase point x being in m: Then from (3)

ðSGÞCG½p� ¼ �kB

X
fmg

pðmÞ ln½pðmÞ� þ kB

X
fmg

pðmÞ ln½mðmÞ�. (17)

The objections to this approach are well-known31 and we shall not discuss them here.
We shall suggest a different approach.

Suppose that a phase point x0 2 Lð�Þ: What is the probability of the system being
in a small measurable set dL0 around x0? This will clearly depend on the physical
circumstances of the system and will differ according to whether the phase point is
confined to Lð�Þ by the physical partition. In that case, if the system is in
‘thermodynamic equilibrium’ the probability will be rð�Þ

G ðx0ÞmðdL0Þ: However, if the
31See Ridderbos (2002) for a recent discussion and Ridderbos and Redhead (1998) and Lavis (2004) for

the application of course-graining to the spin-echo system.
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partition is not present and the system is in ‘thermodynamic equilibrium’ the
probability will be rGðx0ÞmðdL0Þ: Since x0 corresponds to all the particles of the gas
being in one end of the box, it will (in our Boltzmann language) be a rather
‘uncommon state’ and we expect that rGðx0ÞmðdL0Þ5rð�Þ

G ðx0ÞmðdL0Þ: Now consider
the case where at time t ¼ 0 the partition is removed. According to the Gibbs
prescription, the probability of x 2 dL0 is rðx0; 0ÞmðdL0Þ ¼ rð�Þ

G ðx0ÞmðdL0Þ: The
removal of the partition has not affected the probability. But compare this situation
with that where there has never been a partition present and the system phase point
is in dL0: What physically distinguishes the two cases? If, in the course of its dynamic
flow, the system is at x0 at t ¼ 0; its forward evolution will not be affected by whether
a partition has just been removed or whether it simply happens to have evolved into
this state. So why should a different probability distribution be assigned to these two
situations when t40?32 A consistent approach, consonant with our treatment of the
Boltzmann approach, is to suppose that the only meaningful probability density
function to be used from the Gibbs approach is the time-independent solution of
Liouville’s equation determined by the dynamics and the physical constraints on the
system.A change of physical constraints will lead to an instant discontinuous change
in the probability density function and the Gibbs entropy. An uncommon state (like,
for example, the case of all the particles being in one end of the box) will have low
probability when calculated using rGðxÞ and low Boltzmann entropy, but the same
Gibbs entropy as any other configuration.
6. Probability

In the Gibbs approach of Section 5 we introduced the probability density function
rðxÞ on the invariant set L and in terms of this, in (16), defined the probability pðmÞ
that the phase point will be in the macrostate m: What we have not done is define
what we mean by probability. Within the Gibbs approach this is most frequently
done using ensembles, which means that the probability density is not the property of
a single system. But we have already indicated, in Section 1, that our object of interest
is a single system. Our aim in this work is to bring some kind of reconciliation
between the Gibbs and Boltzmann approaches and, as asserted by Lebowitz (1993)
(see the quotation in Section 1), this latter neither has nor needs ensembles.

We need two probabilities, that the phase point is moving on a particular
trajectory and that on that trajectory the phase point lies in a particular subset of L:
For the latter we shall follow Von Plato (1989) in using the time-average definition of
probability. This analysis is simplified if, as we shall do, the ergodic decomposition
(11) is assumed. Then:
(i)
32

be r
The probability pk ¼ Probðx 2 LkÞ was introduced in Section 4.2. It can be taken
to mean either the probability that when we choose the initial point xð0Þ it is in
Of course, the trajectories for to0 will differ and the system from which the partition was removed can

egarded as suffering from ‘false memory syndrome’.
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Lk or the probability that when we investigate the system we find the phase point
in Lk: In either case the probability is susceptible to a Bayesian or Laplacian
interpretation.
(ii)
 The conditional probability that x 2 m given that x 2 Lk is, from (12),

Probðx 2 mjx 2 LkÞ ¼ TkðmÞ ¼
mðm \ LkÞ

mðLkÞ
, (18)

where the first equality represents the time-average definition of probability.
Then

Probðx 2 mÞ ¼
X
fkg

Probðx 2 mjx 2 LkÞpk ¼ hProbðx 2 mjx 2 LkÞiED, (19)

where h�iED denotes the expection value over the ergodic decomposition.
In each ergodic component there is a unique probability density function invariant

under the flow given by

rkðxÞ ¼
1=mðLkÞ; x 2 Lk;

0 otherwise

�
(20)

and

rðxÞ ¼
X
fkg

rkðxÞpk ¼ hrkðxÞiED. (21)

Then, from (16), (20) and (21),

pðmÞ ¼ Probðx 2 mÞ ¼
X
fkg

mðm \ LkÞ

mðLkÞ
pk, (22)

as given by (18) and (19).
For any functions f, integrable on L; and G ; summable on the macrostates, the

expectation value, of f with respect to r and G with respect to p; are respectively

hf ir ¼

Z
L
rðxÞf ðxÞdm; hG ip ¼

X
fmg

pðmÞG ðmÞ. (23)

Clearly

hf ir ¼ hhf jmiip where hf jmi ¼
1

pðmÞ

Z
m
rðxÞf ðxÞdm. (24)

The time-average of G along a trajectory in Lk is

G ðmÞ
k

¼
X
fmg

TkðmÞG ðmÞ (25)
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and, from (18), (19) and (22),

hG ðmÞ
k

iED ¼
X
fkg

pk
mðLkÞ

X
fmg

mðm \ LkÞG ðmÞ ¼ hG ip. (26)

When the system behaviour in Lk is thermodynamic-like it follows, from (10) and
(13), that

G ðmÞ
k

F
X
fmg

mðmÞ
mðLÞ

G ðmÞ. (27)

A phase function f which happens to be constant over each of the macrostates m has
f ðxÞ ¼ hf jmi; 8x 2 m; giving hf ir ¼ hf ip: In particular, from (22),

hSBir ¼ hSBip ¼ kB

X
fkg

pk
mðLkÞ

X
fmg

mðm \ LkÞ ln½mðmÞ�. (28)

Relating the Gibbs entropy to the Boltzmann entropy will necessitate some rational
choice for the probabilities fpkg: One view of pk is that it is the probability that, if we
make a random choice for the the initial system point xð0Þ; then it lies in Lk: If we
assume that all points of L are equally likely then on Bayesian/Laplacian grounds
and consonant with the approach of Bricmont (2001) we should choose

pk ¼ mðLkÞ=mðLÞ. (29)

Then, from (20), (21) and (22)

rðxÞ ¼ 1=mðLÞ; pðmÞ ¼ mðmÞ=mðLÞ, (30)

which is the microcanonical distribution. From (3) and (6),

SG ¼ SL ¼ kB ln½mðLÞ� (31)

and, from (28),

hSBir ¼ hSBip ¼ SG þ kB

X
fmg

pðmÞ ln½pðmÞ�. (32)

When the system behaviour in Lk is thermodynamic-like, it follows, from (26) and
(27), that

G ðmÞ
k

FhG ðmÞ
k

iED ¼ hG ip (33)

and, from (14), thermodynamic-like behaviour is typical if

m
[

Lk�LðAÞ

Lk

0
@

1
A5mðLÞ. (34)
7. Proposals

In this section we shall make the following assumptions:
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(a)
33

p1 ¼
34

equa
35

Thu

close
That the system has the ergodic decomposition (11).33
(b)
 That the probabilities fpkg for the system phase point being in members of the
decomposition are given by (29).
(c)
 That (34) applies and thus that thermodynamic-like behaviour is typical.
Assumption (a) is a purely dynamic assumption which may or may not be true for
any particular system. The statistical assumption (b) is again based on the dynamics
and has the same status as the assumption one might make about a die being
unbiased when making a sequence of trials. Assumption (c) has a dynamic aspect but
is also dependent on some quantification of whether behaviour is or is not
thermodynamic-like.

As indicated in Section 1, two of the obstacles to overcome, in reconciling the
Boltzmann and Gibbs approaches, are the different definitions of equilibrium and of
entropy. With regard to equilibrium we propose, as indicated in Section 4.1, that the
two-valued condition of the system being or not being in equilibrium is replaced by a
continuous property called commonness, based on a designation of macrostates
related to a set of macrovariables. A microstate is more or less common according to
whether the macrostate in which it is situated is of greater or smaller size. The
Boltzmann entropy is a measure of the size of macrostates and thus provides a
measure of commonness. Gibbs methods with a time-independent probability
density function are to be retained as the practical means for obtaining an ‘analogue’
of thermodynamics. The reason for using a time-independent probability density
function to calculate thermodynamic properties is not that the system is in
equilibrium but that the underlying dynamic is autonomous.34

The question of entropy can be subsumed into a more general account of the
relationship between statistical mechanical and thermodynamic variables. As we
have indicated in Section 3, the standard Gibbs perception of the relationship
between statistical mechanical and thermodynamic variables is that they fall into
three classes. Those for which
(C1)
Of

1

A

ti

Th

s f

d

the corresponding statistical mechanical variable is related to a phase function.

(C2)
 the statistical mechanical variable and thermodynamic variable are identical

and equal to an external parameter of the system.

(C3)
 the corresponding statistical mechanical variable is a functional of the

probability density function.
The primary example of C3 is the entropy given by the Gibbs formula (3).35 In the
interests of producing a smooth relationship between the Boltzmann and Gibbs
course, the analysis includes the ergodic case where the decomposition has one member with

:
non-autonomous dynamic system would not yield a time-independent solution to Liouville’s

on.

e class into which a variable falls depends, of course, on the environmental conditions of the system.

or a thermally open system the temperature is an independent parameter, whereas for a thermally

system (like the isolated systems considered here) the temperature is a functional of r:
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approaches we shall make two modifications to the C1–C3 scheme. The first, which
is part of the standard Boltzmann approach, is to related thermodynamic entropy to
a phase function (which is also a macrovariable), namely the Boltzmann entropy
SBðxÞ; so entropy is now of type C1. The second is to propose a particular
relationship, in the case of C1 variables, between thermodynamic variables and
phase functions.

In Section 3 we introduced the set X of macrovariables defined on the macrostates
fmg: The scheme we now propose is that a thermodynamic variable, F in class C1, is
related to a phase function f ðxÞ; defined on L; via a macroscopic function F ðmÞ 2 X:
The statistical mechanical variable is the macrovariable F : In the case of entropy
the phase function and macrovariable are identical and equal to the Boltzmann
entropy. For other thermodynamic quantities this is not the case. We are, thus,
proposing the three-part scheme f*F*F ; where we need to explicate the
relationships denoted by ‘*’.

F*F : The value F ðmÞ is the result of a measurement of f, course-grained, to
effectively give the same value throughout the macrostate m: This perception together
with the definition of macrostates and the Boltzmann entropy in Section 3 serves as
the demarcation between the microscopic and macroscopic realms. Of course, this
demarcation is to some extent arbitrary, but it is equally so for any macroscopic
physical theory.36 The value of the thermodynamic quantity F, along the trajectory
Lx0

passing through x0; we take to be equal to the average of the result of a large
number of measurements of F taken at arbitrarily chosen times. So we can
effectively define

F ¼
X
fmg

Tx0
ðmÞF ðmÞ. (35)

F is a constant of motion, but not constant on L except when the system is ergodic.
When L has the ergodic decomposition (11), F has the set of values

Fk ¼
X
fmg

TkðmÞF ðmÞ ¼ F ðmÞ
k

. (36)

From (33), when the behaviour in Lk is thermodynamic-like,

FkFhF ip. (37)

Measurement of the thermodynamic variable F will typically lead to a value close
to hF ip:

f*F : We now need to be more precise about what we mean by the
macrovariable F : Ideally, of course, the identification

F ðmÞ ¼ hf jmi, (38)
36See e.g. the definition of fluid density in Landau and Lifshitz (1959, p. 1).
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in the notation of (24), would be desirable, because then it follows from (37), that,
for thermodynamic-like behaviour,

FkFhf ir. (39)

This, to within the tolerance indicated by ‘F’, is the standard identification between
thermodynamic variables and the expectation values of phase functions in Gibbs
theory. As we have observed in Section 6, (38) is exactly true for the Boltzmann
entropy because it is, by definition, constant over each macrostate. We should not
expect this to be true for all phase functions. But, of course, not all phase functions
have a correspondence with thermodynamic variables. In particular we shall
assume37 f ðxÞ is (a) continuous on each macrostate and (b) invariant under
permutations of the N microsystems. We have already assumed, in Section 3
condition (iii), that each macrostate is invariant under permutations of the N

microsystems. So the macrostate m can be divided into nm non-overlapping subsets
lðjÞm ; j ¼ 1; 2; . . . ; nm each of identical m-measure. Representing by lm a generic
member of this set, it follows, from (24), that

hf jmi ¼
1

pðlmÞ

Z
lm
rðxÞf ðxÞdm. (40)

When macrostates are constructed from cells in the one-microsystem phase space, nm

is the combinatorial factor in (4) and mðlmÞ ¼ mðLÞ=pN : This latter becomes small as
p becomes large. In this case, since f ðxÞ is continuous over LðmÞ; it is likely to vary
very little.38 Although the macrostate m may be a very large part of L it will be made
of a large number of cells in each of which f ðxÞ has the same nearly constant value.
Thus39

F ðmÞ � f ðxÞ; for any point x 2 m (41)

and

hF ip � hf ir; as the size mðlmÞ becomes small for all m. (42)

So to recapitulate the steps of the argument:
(i)
37

2–3)
38

obse

be u
39

is us

like
Thermodynamic variables are time-averages of phase functions f course-grained
(to produce statistical mechanical variables) over macrostates.
(ii)
 The thermodynamic variable is approximated along (typical) thermodynamic-
like trajectories by the average of f with respect to the probability density
function r:
These are two of the properties assumed for a finite-range observable function by Lanford (1973, pp.

, but, as he says, his use of the word ‘observable’ is not intended to have ‘‘any profound significance’’.

One might at this stage, augment the conditions on f, given above, to the full set defining a finite-range

rvable (Lanford, ibid). Then, for large N, the results of Lanford and Khinchin (1949, pp. 62–69) could

sed to assert that the dispersion of f around hf ir is small.

The symbol ‘�’ used here to indicated approximate equality, should be distinguished from ‘F’ which

ed in this paper with the special sense of ‘approximately equal in a system for which thermodynamic-

behaviour is typical’.
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This establishes the relationship between a Boltzmannian view of thermodynamic
variables as time averages and the Gibbsian view in which they are phase averages

with respect to the appropriate probability density function.

We now consider in more detail the case of entropy. It is often said that in
‘‘equilibrium [the Gibbs entropy] agrees with Boltzmann and Clausius entropies (up
to terms that are negligible when the number of particles is large) and everything is
fine’’ (Bricmont, 1995, p. 188). Apart from the caveats we have entered in Section 4.1
with respect to the concept of equilibrium, this assertion is based on two
propositions (i) that the appropriate probability density function for the Gibbs
approach is given by the microcanonical distribution (30) and (ii) that for large N the
‘equilibrium’ macrostate effectively fills the whole of L: The first of these we have
established, within our approach, for a system with an ergodic decomposition and
with the choice of probabilities (29). In the case where macrostates are defined using
the cell method described in Section 4, (ii) is not difficult to establish. Using Stirling’s
formula with (8),

ln½ZðN; pÞ�

N
’

ðp � 1Þ lnðNÞ

N
with fixed p,

ð1þ xÞ lnð1þ xÞ � x lnðxÞ with p ¼ xN;

8<
:

9=
;as N ! 1. (43)

So in the case where p, the number of cells is fixed, it follows from (7) that

ðSBÞMax=N ! SG=N ; ðSBÞU=N ! SG=N; as N ! 1. (44)

This is in agreement with the results shown in the diagonal figures in Fig. 4 where we
see that the value at which the entropy settles down is closer to the maximum
entropy for larger values of N. In the second case 1=x is the number of microsystems
per cell. With both N and p large the convergence is effected by increasing the
number of microsystems per cell (x ! 0). This is illustrated by the figures in the
vertical columns of Fig. 4. It also follows from (33), (32) and (7) that

SBðmÞ
k

=N F hSBir=N ! SG=N as N ! 1. (45)

As an illustration of these results we take the perfect gas and suppose that it is first
confined by a partition to the region xo0: The Gibbs entropy, given by (6) and (31),
is S

ð�Þ

G ¼ kBN lnðL=2Þ and SG ¼ kBN lnðLÞ; for the respective cases where the gas is
confined by the partition and where it is free to evolve over the whole box. The
Boltzmann entropy in the latter case is given by (2) and (4), with V ¼ L and in the
former case by the same formula but restricted by the condition that N‘ ¼ 0 for
‘4p=2:40 We consider the situation in which the system starts in a minimum entropy
macrostate (with all the particles in the first strip). It is allowed to evolve over the
time interval [0,50] in the region xp0: The partition is then removed and it is allowed
to evolve in the whole box in the time interval [50,100]. This is shown in Fig. 6
where ðSG � ðSBÞMaxÞ=ðNkBÞ in each range is well within the upper bound given by
(7) and (43).
40This expression is, of course, exactly the same as that for a box of length L=2 partitioned into p=2
strips.
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Fig. 6. The scaled Boltzmann entropy for the perfect gas model with N ¼ 1000; p ¼ 100: The gas is

allowed to evolved in the time interval 0ptp50 confined to the left half of the box and then in the interval

50ptp100 into the whole box. The upper and lower horizontal lines in each range correspond to SG and

ðSBÞMax respectively.
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8. Conclusions

In this programme we have used ergodicity and ergodic decomposition and as
indicated in Section 1 there is deep (and justified) suspicion of the use of ergodic
arguments to support the foundations of statistical mechanics, particularly among
philosophers of physics. Having given a comprehensive review of the problems of
ergodic arguments, Earman and Rédei (1996, p. 75) offer the opinion ‘‘that ergodic
theory in its traditional form is unlikely to play more than a cameo role in whatever
the final explanation of the success of equilibrium statistical mechanics turns out to
be’’. In its ‘traditional form’ the ergodic argument goes something like this: (a)
measurement processes on thermodynamic systems take a long time compared to the
time for microscopic processes in the system and thus can be effectively regarded as
infinite time averages; (b) in an ergodic system the infinite time average can be
shown, for all but a set of measure zero, to be equal to the macrostate average with
respect to an invariant normalized measure which is unique.41 The traditional
objections to this argument are also well-known: (i) Measurements may be regarded
as time averages, but they are not infinite time averages. (If they were one could not,
by measurement, investigate a system not in equilibrium. In fact, traditional ergodic
theory does not distinguish between systems in equilibrium and not in equilibrium.)
(ii) Ergodic results are all to within sets of measure zero and one cannot equate such
sets with events with zero probability of occurrence. (iii) Rather few systems have
been shown to be ergodic. So one must look for a reason for the success of
41In the sense that it is the only invariant normalized measure absolutely continuous with respect to the

Lebesgue measure.
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equilibrium statistical mechanics for non-ergodic systems and when it is found it will
make the ergodicity of ergodic systems irrelevant as well.

Our use of ergodicity differs substantially from that described above and it thus
escapes wholly or partly the strictures applied to it. In respect of the question of
equilibrium/non-equilibrium we argue that the reason this does not arise in ergodic
arguments is that equilibrium does not exist. The phase point of the system, in its
passage along a trajectory, passes through common (high entropy) and uncommon
(low entropy) macrostates and that is all. So, although in our definition of a
thermodynamic variable we have extended a large finite number of measurements to
an infinite set of measurements, we cannot be charged with ‘blurring out’ the period
when the system was not in equilibrium. The charge against ergodic arguments
related to sets of measure zero is applicable only if one wants to argue that the
procedure always works; that is that non-thermodynamic-like behaviour never
occurs. But we have, in this respect taken a Boltzmann view. We need
thermodynamic-like behaviour to be typical, but we admit the possibility of atypical
behaviour occurring with small but not-vanishing probability.42 While the class of
systems admitting a finite or denumerable ergodic decomposition is likely to be much
larger than that of the purely ergodic systems,43 there remains the difficult question
of determining the conditions under which the temporal behaviour along a
trajectory, measured in terms of visiting-times in macrostates, approximates, in
most members of the ergodic decomposition, to something recognizable as
thermodynamic-like behaviour.
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